Exercise 15

A spherical balloon is being inflated. Find the rate of increase of the surface area $\left(S=4 \pi r^{2}\right)$ with respect to the radius r when r is (a) 1 ft , (b) 2 ft , and (c) 3 ft . What conclusion can you make?

Solution

The surface area of a sphere is

$$
S(r)=4 \pi r^{2} .
$$

Take the derivative with respect to radius.

$$
\frac{d S}{d r}=8 \pi r
$$

When the radius is 1 ft , the rate of increase of the surface area is

$$
\left.\frac{d S}{d r}\right|_{r=1}=8 \pi(1)=8 \pi \mathrm{ft}^{2} \text { per foot of radius. }
$$

When the radius is 2 ft , the rate of increase of the surface area is

$$
\left.\frac{d S}{d r}\right|_{r=2}=8 \pi(2)=16 \pi \mathrm{ft}^{2} \text { per foot of radius. }
$$

When the radius is 3 ft , the rate of increase of the surface area is

$$
\left.\frac{d S}{d r}\right|_{r=3}=8 \pi(3)=24 \pi \mathrm{ft}^{2} \text { per foot of radius. }
$$

Notice that the rate of increase of the surface area increases linearly in r.

